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SUMMARY

An automatic version of the multigrid method for the solution of linear systems arising from the
discretization of elliptic PDE's is presented. This version is based on the structure of the algebraic
system solely, and does not use the original partial differential operator. Numerical experiments show
that for the Poisson equation the rate of convergence of our method is equal to that of classical
multigrid methods. Moreover, the method is robust in the sense that its high rate of convergence is

conserved for other classes of problems: non-symmetric, hyperbolic (even with closed characteristics)
and problems on non-uniform grids. No double discretization or special treatment of sub-domains

(e.g. boundaries) is needed. When supplemented with a vector extrapolation method, high rates
of convergence are achieved also for anisotropic and discontinuous problems and also for indefinite
Helmholtz equations. A new double discretization strategy is proposed for finite and spectral element
schemes and is found better than known strategies.

1 INTRODUCTION

The multigrid method is a powerful tool for the solution of linear systems which arise from elliptic
PDE's [1]_2]. This is an iterative method, in which the equation is first relaxed on the original fine
grid in oraer to smooth the error; then the residual equation is sent to a coarser grid to be solved
there and to supply a correction term. Recursion is used to solve the coarser grid problem in the
same way the original equation is handled. In order to apply this procedure, the differential operator
has to be discretized on all grids, and restriction and prolongation operators have to be defined
in order to pass from coarse to fine grids and vice versa. The multigrid method works well for the
Poisson equation in the square, but difficulties arise with non-symmetric problems, indefinite problems
and problems with discontinuous coefficients or non-uniform grids. In those cases, it is not easy to

discretize the differential operator on coarse grids and to generate the restriction and prolongation
operators appropriately. Some suggestions about how to handle discontinuous coefficients are given
in [4] and [5], while the singularly perturbed case is discussed in [6]. Slightly indefinite problems are
discussed in [7]. These approaches involve special treatment of problems according to the original
PDE, and the need for a uniform approach is not yet fulfilled.



In principle, the multigrid procedure is problem-dependent, and cannot serve as a "black box"

that solves every problem. Special attention has to be given to the neighborhood of the boundary
and to lines of discontinuity. In [8] [9] [10] an algebraic multigrid method for symmetric problems
is developed. Though this method is automatic m the sense that it depends on the linear system
of equations solely, it suffers from the disadvantage of the coefficient matrices for coarse grids being
of 9-diagonal type, even when the original matrix is of 5-diagonal type [11]. An algebraic version
of multigrid which overcomes this difficulty is presented in [12], andgeneralized to nonsymmetric
problems in [13]. This version, however, does not improve the classical multigrid in cases of indefinite

or hyperbolic problems and of non-uniform grids.

The algorithm which is presented in this work, and which we denote Multi Block Factorization

(MBF) (the reason for this terminology will become clear in the_next section), gives a uniform
approach that enables one to handle the above difficulties. It relies on the algebraic system ot
equations solely, and not on the original PDE. The operators for coarse grids, as well as restriction
and prolongation operators, are automatically defined when the coefficient matrix is given. It seems
to be more robust than the classical multigrid method, as it solves non-symmetric problems (even

hyperbolic or with closed characteristics) as quickly as classical multigrid solves the Poisson equation.
Moreover, it is applicable to non-uniform grids as well, and does not require any special treatment
of sub-domains. For anisotropic, discontinuous or indefinite problems MBF by itself is not always
sufficient. However, it can cope with such problems successfully when it is applied in conjunction
with vector extrapolation methods. In our numerical examples in the present work we have employed
the Reduced Rank Extrapolation (RRE) of [17] and [18]. This and other related methods have been
surveyed in [19] and their analysis provided in [20], [21] and [22]. The numerical implementation that
we have used is the one given in [23].

The MBF algorithm is described in Section 2. In Section 3 numerical results are presented. In

Section 4 the algorithm and the numerical results are discussed.

2 DESCRIPTION OF ALGORITHMS

2.1 Definition of the TBF Method

Let A be an N x N matrix. Let z and b be N-dimensional vectors. Consider the problem

Ax=b (1)

An iteration of the Two-Block Factorization (TBF) method is defined by

TBF(x_,, A, b, zoo,,) :

_gO -= X in

xi+l = xi - Zi(Az - b)
Q_ = R(Azi_ - b)

XQ+I "- Zia -- P_

zi+l = xi- Zi(Axi- b)

Xou _ = Xi1+i2+1

O<_i<ix

(2)

il < i < it + i2

where the Zi are some preconditioning operators, ix and i2 are nonnegative integers denoting the
number of presmoothings and post-smoothings respectively and R, P and Q are operators to be

defined later. Define
_in _- Xin-- X, £out -_ Xout-- X
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Then

Consequently,

by

i1+i2 Q-1

eo_,t= [ 1"I (I- ZiA)](I- PQ-1RA)[I'I (I- ZiA)lein
i= ia + l i=O

Q=RAP =_ eo_.=O =_ Zo_.=z. (3)

In the sequel, practical choices for Q will be considered. An iterative application of TBF is given

z0=0, i=0

while Ilresidualll >_e

endwhile

TB F( zi, A, b, zi+ l )

i_i+l

2.2 Definition of the MBF Method

The Multi-Block Factorization (MBF) method is a modification of the TBF method, in which the
system (2) is not solved directly, but is divided into several independent subsystems, which are solved
directly or recursively by MBF itself. For simplicity, we first write the algorithm for tridiagonal
systems. The operators P, R, Q and D will be defined later.

MBF(z_,_, A, b, zo_t) :

if A is diagonal

Zout = A-lb

otherwise:

D ----

MBF

Xou t = Xin- P_.

diag(dx, . . . , dN)

(0, D -1 Q, D -1R(Az,, - b), _)

We turn now to the more general definition of MBF. First we note that if there exists a subset
of coordinates of x which are independent of the others, then there exists a projection II onto the

sub-space spanned by those coordinates such that (liAH)liz = lib. In the following definition of
MBF such sub-systems are solved directly, provided this can be done easily. The co-subsystem is
solved recursively.

MBF(zi,, A, b, zoo, t) :

1. If A is diagonal, set Zo,,t = A-ab and stop.

2. If A includes an independent tridiagonal subsystem (IIAII)IIz = lib, solve it directly: IIzo,,t =

(IIAII)-lIIb. If not, set li = 0.

,

vo -= (I-II)z,,,
- (z- li)b

Vi+l -- _li -- (I - II)Zi(Ay_ - b) 0 < i < ii

D -- diag(dl,...,dlv)

MBF (O,D-1Q, D-1.R(Ayq- b), _) (4)
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v_1+1 = wl - (I - II)P_

v,+, = v,- (z- II)Z,(Ay,-
(I-II)zo_t = W1+i2+1.

il < i < il + i2

Trivially, one can replace action (4) by variant a :

MBF (O, QD-',R(Ayil-b),e)

= D-le

or variant b :

MBF (0, D-112QD -1/2, D-1/2R(AviI - -b), e)

= D-112e.

An iterative application of MBF is given by

zo=O, i=0

while I[residual[[ > e

endwhile

MBF(xi, A, b, xi+l)

i_i+l

2.3 The Tridiagonal Case

Let I denote an identity operator. Suppose N = 2" for some positive integer n, and let A be a

tridiagonal M-matrix satisfying diag(A)= I. Let M(N) be the permutation matrix which reorders
the variables of N-dimensional vectors such that odd numbered variables appear in a first block and

even numbered variables appear in a second block. Define

Mo = M(N), Ao = A.

Then for some bidiagonal matrices/30 and Co we have

(IBO)Mo-1 -1Ao = M [ Co I = RA'IQA'IPA'I'

where

"RA'I = -Co I 0 I- CoBo ' 0 I "

Note that QA,1 is the Schur complement for A.

For i = 1,2,..., let Ii denote an identity operator of order N - 2 _-i. Let Mi be the N x N
permutation matrix that reorders the coordinates zi, i = N - 2 n-i + 1,..., N, of an N-dimensional
vector in the above manner, that is, order odd coordinates in a first block, then even coordinates in

a second block. In fact,

M,= ( I, O)0 M(2 _-') '
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For 1 < i < n, define

i, 0 0 {z, 0 0)PA,i+I=M T 0 I -Bi l, RA,i+I= I 0 I 0 .Vii,

oo I/ \o -o_I

{z,o o )Qa,_+l = Ra,_+lA_Pa,i+l = [ 0 I 0 ,

\ 0 0 I- C_B_

DA,i+l = diag(OA,i+l),

A,+, = DAIi+IQA,i+I = MT1 I , Mi+l, (i < n- 1).

0 C_+1

The last equality sign implicitly defines Bi+l and Ci+l. For variants a and b, the above definition is
modified to read

D-1Ai+l = QA,i+I A,i+l

and
ra-1/2 _ n-112

Ai+l = ._'A,i+lt_dA,i+lZdA,i+ I,

respectively.

Lemma 1 For all variants, the matrices Qi and Ai are tridiagonal M-matrices.

Proof." The lemma follows from the definition by induction on i. []

Lemma 2 The TBF method, when applied with

Q, = QA,1, P - PA,,, R - RA,I, il = O, i2 = 0

is a direct method.

Proofi Since

Q = QA,1 = R_t,IAoPA,1 = RAP

the lemma follows from equation (3). []

The even numbered variables may be viewed as coarse-grid points. Then Q is a coarse grid
operator, R is a fine-to-coarse restriction and P is a coarse-to-fine prolongation.

Lemma 3 The MBF method applied with the operators

A = Ai-1, Q = QA,i, D = DA,i, t 9 =-- PA,i, R =..RA,i

on the i tn call to the MBF procedure, is a direct method.

mtProof." Note that on the (n+l) call to the MBF procedure, the coefficient matrix An is diagonal, so
the MBF procedure is a direct solve. By induction on i = n,..., 1, all calls to MBF are equivalent
to calls to TBF, hence are direct solves, t2

In fact, in the tridiagonal case the MBF method is equivalent to the cyclic reduction method.

:T
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Note that if the matrices P and R are defined to be the rectangular matrices

QA,i+* = RA,i+,AiPA,i+I = I- CiBi,

D A,i+,= diag(Q A,_+,),

Ai+l -1 T( I B,+I ) M,+I,= DA'i+IQA'i+I = Mi+l Ci+, I

then the algorithm will still be applicable. As a matter of fact, the only difference between this method
and the former is that in the present method we are not taking advantage of the known residuals on
the odd numbered variables when making the coarse grid correction. Hence, if those residuals are
zero, which may happen as a result of red-black presmoothing, the present method serves as a direct

method, just as the former.

2.4 The Separable 2-Dimensional Case

Let S - (ski) and T = (ti,j) be matrices of order M and N respectively. Define

81,1T Sl,MT

SoT= si,jT

SM,1T S M ,MT

Actually, o denotes the tensor product. Suppose A is of the form

A = To Es,0 + Er,0 o S

where T and S are trid{agonal scaled M-matrices and Es,o and ET,o are diagonal matrices. For

example, if
T = S = tridiag(,1/2,1,-1/2), ET,O = Es,o = I

then A represents a central discretization of the Poisson equation on a square with Dirichlet boundary
conditions.

Suppose T and S have the same order N, which is a power of 2. As in the previous section, we define
the matrices T/, Si, Rr,i, Rs,i, Pr,i, Ps,i, Qr,i, O,s,i, DT,i and Ds,i. For any matrix B = (bi,j)l<_,j<N

let N

rowsum(B) -- diag(_ bi,j)l<_.i<N.
j=l
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For 0 _ i < n, define

ET
Es

PA,i+I

RA,i+I

- rowsum(Rr,,+,)Er, ,rowsum(Pr,,+O
- roweum(Rs,,+l)ES,i, rowsum(Ps,,+,)
= PT,_+I o Ps,i+l

-- RT,d+I o Rs,d+l

DAj+I _-- DTj+I 0 Dsj+I

ETj+I _-- D_I_+IET
-1

Es,,+l =- Ds,,+lEs

QAj+I _-" RT,i+lTiPT,i+l 0 E$ -b ET o Rsj+ISdPs,d+I
-1

A_+x - DA,,+IQ.4,_+I

= T,+x o Es,,+l + ETj+I o Si+l.

In the definition of TBF, we take

Q -= Qa:, P = Pa:, R -= Ra:.

Note that if we would eliminate the word rowsum in the above definition, the TBF method would
be direct, due to equation (3). Nevertheless, for smooth vectors, multiplication by a positive matrix
B is well-approximated by multiplication by rowsum (B). Since Ti is an M-matrix, RT,,+I and PT,_+I
are positive. Consequently, if we use presmoothing and post-smoothing, i.e. ix > 0 and i2 > 0,
then the error is smooth, so equation (2) would give a good corrector for the current approximation.
Moreover, the use of the above row-sum approximation makes the system (2) much easier to solve
than the original system, since it includes 4 independent subsystems:

1. A diagonal system connecting variables which are odd in both directions, i.e., variables that

correspond to odd rows of both S and T (fine grid system).

2. A tridiagonal system connecting variables which are odd in the first direction and even in the

second, ,_.e., variables that correspond to odd rows of T and even rows of S (half coarse system).

3. A tridiagonal system connecting variables which are even in the first direction and odd in the

second, i.e., variables that correspond to even rows of T and odd rows of S (half coarse system).

4. A penta-diagonal system connecting variables which are even in both directions, i.e., variables
that correspond to even rows of both S and T (coarse grid system).

Only the solution of the last subsystem is expensive. The MBF method solves this subsystem

recursively by the same procedure. On the i th call to MBF (0 < i < n) the operators used are

A - Ai_,, O = Qa,,, D = DA,i, P - Pa,i and R -= RA,,.

Since A, is diagonal, the method is well-defined. The total work of MBF for a problem with N 2
variables is

w(N 2) = O(N 2) + w(N214) = O(N 2) + OCN2I 4) + w(N2116) =... = OCN 2)

Note that if we had

-1(ro sum(RT,,+O.,ow,=m(PT,,+,))ox = .zoDs,,+l
Xo (rowsum(Rs,,+l). rowsum(Ps,,+O) = Dr,,+,-x o I
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then

QA,i+I = DT,i+ITi+I o Es + ET o Ds,i+ISi+I

- T/+I o Es,i q- ET,i o Si+l

is already in the scaled form, on which the MBF algorithm may act recursively. Hence the scaling
by D -1 in action (4) of Section 2.2 is not needed. Of course, these equalities cannot hold exactly, but

if'they hold appro'xl"mately, we can avoid scaling. Especially in the. non-s.epa.rable case,, where scaling;
is impossible, action (4) has to take place without scaling by D -1 (instead of actual scal.mg z we would
prefer in that case to keep diagonal matrices multiplying the difference operators in each of the space
directions). Hence we would like to assume the above equalities at least for all former levels, that is,
at the i t_ call to MBF, for all 0 _< j _< i - 2. We call that variant "noscal".

If we use the rectangular matrices P and R of the last part of Section 2.3, we get a variant of
MBF which we call variant notri. In this variant, only the last of the four subsystems described
above is solved. It assumes that the other tridiagonal subsystems affect only the smoothness of the
error. The row-sum operation, however, is still performed on the original triangular matrices and not

on the newly defined rectangular matrices.

Instead of the operators Ai and QAj defined above, one may use difference operators which arise
from the original PDE. If the algorithm is to be automatic, all such operators have to be of the
same type (i.e. central or upwind) as the original fine-grid operator. (Nevertheless, in Section 3
we will see that for some non-symmetric problems this condition has to be violated for the sake of

convergence.) We use this strategy with the rectangular matrices of variant notri; our version is then
different from classical multigrid only in the choice of restriction and prolongation operators. Note
that the row-sums computed in the MBF algorithm are usually 4. Instead of the multiplication by

these row-sums, one may divide the residual by 4 before action (4) of Section 2.2. Then one gets an
algorithm which is equivalent to that of [12] for the Poisson equation, and is close to that of [5] for
other problems. We denote that strategy MGF (Multigrid + Factorization). It should be kept in
mind that when applying this strategy one must use 2 _ - 1 grid points on the finest srid and 2 q - 1,
1 < q < n for coarser grids in order to conserve uniformity. Here the even points, which are taken as
coarse grid points, are always internal points of the original stencil. For 2 q point grids, on the other
hand, the last fine grid point appears as a last grid point in all grids. Hence, coarse grids are biased
towards the boundary. For our method MBF, on the other hand, stencils of both 2" points or 2n - 1

points may be used. This is critical for implementation to problems on general regions, where grid
lines may contain variable numbers of grid points (see Section 4).

As mentioned above, the MGF method requires division of residuals by 4 before action (4) takes

place. Sometimes it is better to scale the discrete operators on all grids instead of dividing the
residuals by this factor. Actually, for the Poisson equation both manners are equivalent: suppose A1
has a coarse step-size H = 2h; then normalizing AI to have the same diagonal entries as A0 = A
amounts to multiplication of A1 by the factor 4, which is equivalent to the division of the residual
in action (4) by that factor. Nevertheless, for differential equations that include derivatives of orders
other than 2, this variant is not equivalent to MGF. We call it MGN (Multigrid + Normalization).

The generalization of the MBF method and of the other multigrid versions to nonseparable
problems is straightforward. A tensor product by an N x N diagonal matrix is to be replaced with
a multiplication _y an N 2 x N 2 diagonal matrix.

Another generalization of MBF is to non-rectangular domains. This is also straightforward, since
a line containing an odd number of points may be divided into two sets, one containing odd points
and the other containing even points. Then one of those sets is considered as a coarse grid, and is
divided recursively in the same way. A similar strategy may be used in the other space direction.
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3 NUMERICAL EXPERIMENTS

In this section, the MBF method is compared to other multigrid versions. The problems solved

are of the type
Lu(x,y)=f(x,y) (x,y) e (0,1) 2

u(z,y) : xy (x,y) e 010,112

The equations are discretized via a 3-point central difference scheme. For MBF, the number of grid
points in each space direction is N = 2 ". For other multigrid strategies, however, the number of

rid points in each space direction is N - 1 = 2 n - 1; otherwise, coarse grids are biased towards the
oundary (see Section 2.4), and the convergence is slow.

For MBF, we have used variant "notri" of Section 2.4, in which tridiagonal subsystems are not
solved. The main variant, which involves the solution of those subsystems, was found to be at most
as effective as "no_ri".

The main variant of Section 2.4 was used for the hyperbolic, the non-uniform, the strongly in-

definite and the discontinuous problems (the latter when applied with a red-black smoother). For
other problems we have found that variant "noscal,, described there (in which scaling of coarse-grid
operators is omited), performs equally well. Hence we have chosen to use this simpler version rather
than the main variant. Indeed, it was found that for most problems its performance was very close
to that of the main variant. For the hyperbolic problem, however, its performance was twice as slow.

The smoother of the error in all grids was the one provided by the ILU(1, 1) iteration of [24]

[25] [26] or the red-black (RB) iteration. This determines the operators Z_ of Section 2.2 to be the
preconditioners for the ILU(1, 1) or RB iteration, respectively. These smoothers were found to be
superior to the Jacobi and damped-Jacobi smoothers. One presmoothing and one post-smoothing is
performed. The initial guess is random. Double precision arithmetic is used.

The integers in the following tables present the number of iterations needed to reduce the 12 norm
of the residual by 108 . The maximum norm of the error was also computed, and its rate of convergence
was close to that of the residual.

In conjunction with the MBF iteration, we have used the computer code of [23] that implements
the vector acceleration RRE that was mentioned in the introduction. The RRE acceleration was

employed in cycling mode, by restarting it after every 10 iterations until convergence. The results of
this are compared to those provided by the MBF iteration without acceleration denoted by NONE.

Wehave also examined the classical multigrid versions mentioned at the end of Section 2.4. This

strategy is denoted by the superscript D. The number of grid points in each space direction is
N - 1 = 2 _ - 1. In most of the problems, the MGF and MGN versions of Section 2.4 are equivalent.
Where this is not the case, we mention explicitly which of the two versions has been employed.

For comparison, we also checked the performance of a method which does not involve any multigrid
strategy. This method is the Modified ILU method of [29] with the optimal parameter of [30], used
as a preconditioner for RRE. It is denoted by MILU.

In the following tables, when a method converges very slowly we denote it by "slow", and when
a method diverges, we denote it by "div'.

3.1 The Poisson Equation

In table 1 we present the results for the Poisson equation.
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RRE NONE RRE NONE

N ILU ILU RB RB

• 32 4 5 5 7

64 4 5 5 7

128 4 5 5 7

RRE

ILU v

4

4

4

NONE

ILU v

5

5

5

RRE

RB v

5

5

5

Table 1: Results for the Poisson equation

NONE RRE

RB u MILU

7 19

7 27

7 42

MBF and the classical multigrid version perform equally well for this problem.

3.2 Poisson Equation on a Tchebycheff-Type Grid

In table 2 we present the results for the Poisson equation, discretized via central differences on
the 2-dimensional grid

- cos(_-f) ) 1 < j,k < NV(j,k) - (1--cOS(g--_l) 1 k,
2 ' 2 -- --

The matrix operator for this scheme may be used as a preconditioner for a Tchebycheff-collocation
discretization of the Poisson equation (see [31] and the references therein).

RRE NONE RRE

N ILU ILU RB

32 4 5 7

64 4 6 9

128 5 7 13

NONE] RRE
RB ILU v

10 4

19 5

33 5

NONE RRE

ILU v RB v

5 8

6 10

6 14

NONE RRE

RB v MILU

11 16

18 23

28 36

Table 2: The Poisson equation with non-uniform grid

The superscript D refers to the MGF method of the end of Section 2.4, which is in the spirit of
Dendy [12]. It performs equally well as MBF.

3.3 An Anisotropic Discontinuous Equation

In table 3 we present the results for an anisotropic equation whose coefficients are discontinuous;

,_(z)u,= + a(y)uv_ = 0

Here a(t) is defined by

a(t)={ 0.01 0<t<0.51 0.5<t<l
%

MBF and MGF perform equally well for this problem. For both methods, N - 1 grid points were
used in each space direction. If N = 2 n grid points are used in any of the space directions, then
for coarse-grid problems the discontinuity lines are biased towards the boundary, and convergence
becomes slow.

Results similar to those of table 3 were obtained for the continues anisotropic problem

u_x + 0.01u w = 0

This time, however, there was no difference in convergence rate when the number of grid points in
each space direction was changed from N = 2 '_ to N - 1 = 2 _ - 1, for both MBF and MGF.
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RRE NONE RRE NONE

N ILU ILU RB RB

32 5 6 19 slow

64 7 10 26 slow

128 9 13 28 slow

3.4

RRE

ILU u

5

7

9

NONE RRE

ILU _ RB v

6 19

10 26

13 28

Table 3: An anisotropic discontinuous equation

NONE RRE

RB u MILU

slow 23

slow 32

slow 48

A Convection-Diffusion Equation with Circular Streamlines

In table 4 we present the results for the convection-diffusion equation

ux_ + u, + 150( (y - 0.5)u_ - (x - 0.5)u_) = f

whose characteristics are circles:

RRE NONE RRE

N ILU ILU RB

32 7 10 12

64 6 10 9

128 6 10 9

NONE

RB

15

12

12

RRE

ILU _

8

8

8

NONE

ILU u

slow

slow

slow

RRE

RB _

div

div

div

NONE RRE

RB u MILU

div 28

div 51

div 94

Table 4: A convection-diffusion equation with circular streamlines

Problems of the last type are widely discussed in [6]. The approach developed there requires

special treatments and is not as automatic as ours.

3.5 A Convection-Diffusion Equation with Radial Streamlines

In table 5 we present the results for the convection-diffusion equation

u=x+ u_ + 150( xu= + y%) = f

whose characteristics are radial lines:

RRE NONE RRE NONE

N ILU ILU RB RB

32 7 9 slow div

64 5 6 13 12

128 5 6 9 10

RRE

ILU u

7

7

8

NONE

ILU v

RItE NONE

RB u RB u

div div

15 15

12 15

Table 5: A convection-diffusion equation with radial streamlines

RRE

MILU

28

51

94

The D superscript denotes here the MGF method of the end of Section 2.4. Nevertheless, the
purely automatic MGF version, in which all difference operators are central, diverged. To avoid
that we had to use upwind difference schemes for all grids coarser than the original grid. This

strategy, however, thoush performing almost equally well as MBF, suffers the disadvantage of not
being automatic. Another way to overcome divergence is to use the MGN method of the end of
Section 2.4, with the same step-size h for all grids. This strategy is non-automatic as well, and about
twice as slow as the first one.
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3.6 A Convection Equation

In table 6 we present the results for the convection equation

(y - 0.5)u_ - (x - 0.5)u_ = f

whose characteristics are circles, discretized via an upwind scheme:

RRE

N ILU

32 10

64 15

128 23

NONE

ILU

27

49

89

RRE

ILU u

10

14

23

NONE

ILU u

slow

slow

slow

Table 6: A convection equation with circular streamlines

The superscript D refers to the MGF method of the end of Section 2.4. Its performance is equal
to that of MBF.

The standard ILU and the Modified ILU of [29] (on the fine grid only, without multigrid strategy)
do not converge for this problem. All multigrid strategies with an RB smoother are very slow.

3.7 The Helmholtz Equation

In table 7 we present the results for the Helmholtz equation

uxz+ u w + flu = f

with fl = 64. The RRE method for MBF was restarted in this example after every 5 iterations.

RRE RRE RRE RRE

N ILU RB ILU u RB u

32 9 14 17 16

64 9 13 17 19

128 8 15 18 20

Table 7: The Helmholtz equation

Without acceleration, all methods diverged. The RRE acceleration for ILU and MILU iterations
(on the fine grid only, without multigrid strategy) also diverged.

The superscript D denotes here the MGN version, used with a continuation strategy; that is, use
a parameter fl smaller than that of the original PDE for _rids coarser than the original grid, in such
a way that the number h2fl is constant for all grids. Wit'l_out this continuation strategy, divergence
was reported. Consequently, it suffers the disadvantage of not being automatic.

This problem is of the type of problems discussed in [7]. The projection approach given there
requires more work and special treatment.

For fl > 64, the R.RE acceleration for MBF seems to suffer stability problems, as the residual
no longer decreases monotonically. A machine with higher precision (or Kacmarz smoother as in
Section 3.8) is required. With classical multigrid, on the other hand, the acceleration is more stable:
with the ILU smoother, it converges for fl = 100 and N = 64 in 42 iterations.

Note that the Helmholtz equation and the convection-diffusion equations are better-posed as the
number of grid points increase; hence the number of iterations generally decrease.
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3.8 Helmholtz Equation with Mixed Boundary Conditions

The above experiments involve Dirichlet boundary conditions. In this sub-section we examine the
Helmholtz equation with Dirichlet boundary conditions on the edges x = 0, x = 1 and y = 1, and

with the mixed boundary conditions

Ou (5)
0"--_+ _u = g

on the edge y = 0.

We have repeated experiments 6.1 and 6.3 of [32], for which _ = 100, a = 100i, N = 31 and

= 200, _ = 10i, N = 63 respectively. On coarse grids, where the problem is very indefinite, we
have used Kacmarz relaxations as a smoother. The cost of an MBF or MGF iteration was about
10 Jacobi iterations of the original problem. With MBF, we have converged in 10 iterations for the

first problem and in 18 for the second one, which is much better than the results of [32]. With MGF,

applied with the continuation strategy described in Section 3.7, we have converged in 23 iterations
for the first problem.

3.9 Helmholtz Equation with Finite Elements

Finally, we have examined the Helmholtz equation

uxx+ + = /

with _ = 200 and Dirichlet boundary conditions, discretized via bilinear finite elements. The grid
for those elements is not uniform; in each space direction, the domain is divided into 4 elements, and

the grid points are the roots of the Legendre polynomial of degree 17 in each element. Hence the
total number of grid points is 632. This grid induces a division of the domain into squares, which

serve as the bilinear finite elements. The matrix operator for this bilinear element scheme may be
used as a preconditioner for a spectral element dlscretization of the Helmholtz equation (see [31] and
the references therein). Though the coefficient matrix has nine non-zero diagonals, the operators

for coarser srids have five non-zero diagonals only; they are obtained from the above finite difference
approximation in the automatic or classical manners. Actually, this is a double discretization strategy.
The relaxations on the finest grid are the ILU iteration or the four-color Gauss-Seidel iteration, un

the second grid, the relaxation is ILU or RB iteration. One presmoothing and one post-smoothing
are performed on those two grids. On coarser grids, since the operators are more indefinite, these
relaxation methods are too divergent; hence, we use instead the Kacmarz iteration, 40 presmoothings

and 40 post-smoothings on each level. Since on the third grid the number of points is 1/16 of that of

the original grid, the total work on that grid is about five Jacobi relaxations of the original system.
The cost of the whole multigrid or MBF procedure is about 10 such relaxations. RRE acceleration
is restarted after every 10 multigrid or MBF iterations. The number of MBF iterations needed to
reduce the residual by 6 orders of magnitude is 28 when ILU is used on the two finest grids and 27
when the Gauss Seidel smoother is used there. For MGF (with ILU on the two finest grids and with

the continuation strategy of Section 3.7), the number of iterations needed is 52. When the residual is
reduced by 6 orders of magnitude, the error is reduced by 6 orders for MBF and 5 orders for MGF.

We also examined the mixed boundary conditions case. For the mixed boundary conditions (5) on

the edges x = 0 and y = 0, with _ = 200, _ = 10i and N = 64, MBF converged in 52 iterations, each
costs about as much as 7 Jacobi iterations, with RRE restarted after every 20 iterations. Classical

MG methods did not converge for this problem, even with the continuation strategy of Section 3.7.
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3.10 Helmholtz Equation with Spectral Elements

The above double discretization strategy is not limited to bilinear element schemes; it was em-

ployed successfully for the spectral element scheme of [33] as well. Again, we relax the original
equation on the finest grid; then we compute the difference scheme based on the nodes of the spectral
elements, and use it to generate the coarse grid operators via MBF. These operators are used to

find the coarse grid correction. For the Helmholtz equation with the mixed boundary conditions (5)
on the edges x = 0 and y = 0, with the parameters _ = 100, a = 100i and N = 16 and with
4 x 4 Legendre-type spectral elements, MBF converged in 16 iterations, each costs about as much
as 5 Jacobi iterations (with RRE restarted after 10 iterations). For the same problem but with the
parameters o_ = 200, _ = 10i and N = 64, MBF converged in 60 iterations; each costs about as
much as 2 Jacobi iterations. This rate of convergence was much better than that of the algorithm of
[31], in which the spectral element scheme is preconditioned by a finite element or a finite difference

scheme (even when the preconditioning system is solved by MBF). As a matter of fact, even for the
Poisson equation our strategy was about 3 times faster than that of [31].

4 DISCUSSION

The MBF method is a version of multigrid, which is automatic in the sense that it depends
on the algebraic System of equations rather than on the original PDE. Actually, it is a black box
method for the solution of the linear system of equations. Hence it seems to be more robust than the
classical multigrid method. For instance, nonsymmetric terms in the equation do not slow down the
convergence, whether the characteristics are closed or open. Non-uniform grids are handled with the

same efficiency, and no special treatment of the neighborhood of the boundary is needed. Moreover,
when the RRE acceleration is applied to the method, it copes with the indefinite Helmholtz equation
as well. For all these examples the rate of convergence is rather independent of the size of the problem.
For anisotropic or pure advection problems, however, the rate of convergence of the MBF method
applied with the RRE acceleration slightly depends on the size of the problem.

The MBF method is especially suited to use with the IZU smoother. The red-black smoother

gives slightly worse results. The doubled damped Jacobi iteration as a smoother (with a dampin_
parameter 0.5) was examined too. For all the above problems but the discontinuous-anisotropic and
the hyperbolic problems, its performance was about twice slower than that of the ILU smoother. For
those two problems, the damped Jacobi smoother was unsatisfactory.

The versions of multi_.rid denoted MGF and MGN perform well for problems which do not involve

central first derivatives (including discontinuous and anisotropic problems). For problems which do
contain central first derivatives, since the algorithm is assumed automatic, the discretization on coarse

grids is of the same type as that of the fine grid, i.e. central. Hence divergence is often caused by
the coarse-grids corrections. This difficulty can be handled by the special treatments of Section 3.5,
but then the algorithm is no longer automatic. For the Helmholtz equation, one may overcome this

difficulty by usin_ a continuation strategy in the MGN version. Even though this (non-automatic_

strategy is a bit slower than MBF, it is more stable and is applicable to more singu_lar problems. I'f
one uses Kacmarz relaxation on coarse grids, both MBF and MGF converge even for very indefinite
problems, the MBF again being faster.

As opposed to the classical multigrid versions, the MBF is applicable whether the number of grid
points in each space direction is even or odd. This indicates that it is applicable to problems defined
on general regions. Given a region n C R 2, one takes as a fine grid the restriction of an infinite

2-dimensional fine grid to ft. For a coarser grid, one takes every other point (in both x and y space
directions) in the infinite fine grid, and takes the restriction to _. The other coarse grids are created

in the same way. As we have seen, MBF is not affected by the possibility that some coarse grid
points lie near Of/. The coarse grid operators are created automatically as in the above description;
this can be done easily by modifying the block sizes in the coefficient matrix of the system. Thus the
algorithm is easy to program.
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